GAS INDUSTRY COMPANY LIMITED

Ian Dempster—Gas Industry Co Ben Farrington—Concept Consulting Group Gas Outage and Contingency Management Arrangements — Stakeholder Workshop

27 November 2007

- 1. Introduction & recap
- 2. Overview of submissions analysis
- 3. Key changes
 - OCMP approvals
 - Imbalance calculations & pricing
- 4. Timetable and next steps

Approach to contingency management arrangements - a reminder

Hybrid combining regulation and industry arrangements

Framework Hierarchy	Description		
Gas Act	43F(2)(a)(vi) – empowering provisions		
Outage and Contingency	 Define critical gas contingency (CC) 		
Management Regulations (OCMR)	 Critical Contingency Operator (CCO) to manage security of supply under CCs 		
	 Powers for CCO to direct load curtailment via Transmission System Operators 		
	 Contingency Price to cash-out any quantity mismatches after event 		
	 Each TSO to prepare an Outage and Contingency Management Plan (OCMP) 		
	 Process for approval of each OCMP 		
Outage and Contingency	 Linepack or pressure levels to trigger a CC 		
Management Plans (OCMP)	 Processes to be followed during a CC 		
	 A plan for communicating with relevant parties 		
	 A process for communicating with Civil Defence and local authorities as required 		

GASESSES Still need to manage contingencies in transmission codes

Consultation Process

- Statement of Proposal issued in August
- Industry Forum held on 23 August
- Responses received from seven industry members
- Submissions analysis and meetings with a number of submitters to clarify issues raised

Issues split into two categories:

- Issues of Principle
- Implementation Issues

Issues of Principle (1)

Issue	What was said	Analysis
Need for mandatory	Genesis and Mighty River	Proposal did not provide sufficient
powers	Power raised concerns	explanation of rationale. Mandatory
	about problem definition	powers only apply in rare
		circumstances.

Issue of mandatory power – provided more detail of the rationale in the submissions analysis paper

Issues of Principle (2)

What was said	Analysis
MDL proposed an alternative 'model' based on compliance with pipeline operators' instructions/codes backed by regulation to enforce compliance	 Difficulties with MDL proposal: no single party in charge; proposed arrangement is more comprehensive; Gas Act unlikely to sanction regulations which provide for third parties to enforce contractual parties to enforce contractual parties to enforce contractual
V A o p ir b e	Vhat was said ADL proposed an Iternative 'model' based on compliance with operators' nstructions/codes acked by regulation to nforce compliance

Mandatory powers to be exercised by pipelines rather than CCO – MDL proposal not a practicable option

Issues of Principle (3)

Issue	What was said	Analysis	
Regulatory objective	Potential ambiguity	Minor change required to convert RO from an outcome to an objective	

that arrangements are in place to achieve effective handling of a national or regional gas contingency without compromising long-term security of supply

GAS INDUSTRY COMPANY LIMITED

Implementation Issues – proposed changes to statement of proposal

Issue	Change to SOP	Proposal
Terminology	Events triggered under OCMP need to be clearly distinguished from situations handled under MPOC/VTC	Revised terminology in several areas to align with transmission access regulations and to avoid confusion with MPOC

Terminology

Revised terminology	Previous
Critical contingency	Gas contingency
Critical contingency operator (CCO)	Gas contingency operator (GCO)
Transmission system	Transmission network
Transmission system owner (TSO)	Transmission network owner (TNO)
Critical contingency price	Gas contingency price
Critical contingency operator service provider agreement (SPACCO)	Gas contingency operator service provider agreement (SPAGCO)

Implementation Issues – proposed changes to SOP

Issue	Change to SOP
Cost recovery	Reconsider recovery of development and establishment costs

Funding and cost allocation

- Consider spreading up-front development and establishment costs over 3 years (rather than recovering at start)
- Requires funding arrangement
- How significant are these costs?
 - up-front charges under SPACCO
 - costs for industry expert on OCMP approvals
- May be more efficient in contract with CCO for CCO to spread up-front costs over duration of agreement

Implementation Issues – proposed changes to SOP

Issue	Change to SOP
Information provision	Two-way information flows between the CCO and participants

Flows of directions and information during a Critical Contingency

S INDUSTRY COMPANY LIMITED

(†A

Additional information provision from CCO

Requirement on CCO to publish a declaration that a critical contingency has been declared

Add requirement for CCO to publish (i.e. make available on critical contingency website):

- Updated information on the status of critical contingency
- All formal notices given by the CCO

Implementation Issues—other changes to statement of proposal

- Avoiding deadlocks in OCMP preparation
- Quantifying gas imbalances during a CC
- Calculating the Critical Contingency Price
- Invoicing

Significant implementation issues identified in the Submissions Analysis

1. Avoiding deadlock in preparation of OCMPs

Key changes

- Hierarchy:
 - CCO now communicates with expert adviser
 - Expert adviser recommends approval of plans
- Gas Industry Co has limited ability to change plans in some circumstances:
 - may amend plan if 6 months has elapsed without a plan being approved
 - amended plan in force until TSO provides replacement plan and Gas Industry Co approves

How OCMPs are assessed and approved

* Amended OCMP prevails until TSO has produced a revised OCMP that has been approved

Gas imbalances during a CC—how these will be calculated

GAS COMPANY LIMITED

Gas Imbalances during a CC – details of the arrangements

OCMR	 Use the most detailed metering data available 			
	• Estimates of end user consumption during period of CC will assume compliance with curtailment instructions unless evidence of non compliance			
	 Shippers with negative gas imbalances pay Contingency Price 			
Contract imbalance	 Measurement starts from the next hour bar after a CC declared and ends from the next hour bar after CC terminated 			
guidelines	 Most detailed metering means hourly metering at WPs 			
(annex to	 Hourly allocation to non-hourly metered consumers is 1/24 of daily allocation 			
OCMR)	<u>Maui pipeline</u>			
	 Change in linepack: when change is cashed-out and when change is an adjustment to Running Operational Imbalance at WPs 			
	Vector pipeline			
	 In a regional contingency the allocation of flows through delivery WP will be made pro-rata to shipper capacity booking at WP 			
ОСМР	 Refer to the arrangements under the TSO's Code 			
	 Describe the adjustments necessary to implement regulations i.e. single period for the CC, rather than one day 			

Operational Imbalances under OCMR arrangements: example based on 5 June 2007

- Information taken from the Incident Report published on OATIS
- Simplified example to illustrate the principles of the cash-out and change in linepack
- Phase 2 under NGOCP declared at 19:05, on 5 June
- Under OCMR arrangements the CC is regarded as commencing at 20:00 hours for measurement purposes
- Assume CC terminated with effect from 01:00 hours (in fact phase 5 of NGOCP was terminated at 08:21 on 6 June)

Operational Imbalance (OI) at each WP

- Calculate the OI at each WP over the duration of the CC
- In any hour the Operational Imbalance is:

Receipt WP	(Flow – Scheduled Quantity)	Over injection is +ve
Delivery WP	(Scheduled Quantity – Flow)	Under taking is +ve

• During the CC:

- the Scheduled Quantities are held fixed
- the Flows are the demand (including any curtailment of consumers) downstream of WP

Flows and Scheduled Quantities during CC

Source: Maui Pipeline Contingency Event - 5th June 2007, OATIS

Receipt WPs: OI is +ve

Delivery WPs: OI is -ve

OI measured at each receipt and delivery WP on Maui pipeline

Overall reduction in linepack: negative OI quantities at Huntly and Rotowaro are cashed-out Operational Imbalance (OI) by Welded Point

Calculation of OI during 5 hours of CC

All figures in TJ	Receipt Welded Point (RWP)			Delivery Welded Point (DWP)			
	Ngatimaru Rd	Tikorangi #2	Other RWPs	Huntly	Rotowaro	Other DWPs	
Flow	10,000	3,500	Lots	12,500	29,000	Lots	
Scheduled Quantity	0	0	Lots	4,000	22,000	Lots	TOTAL OI = change in linepack =
Operational Imbalance*	+10,000	+3,500	Zero	-8,500	-7,000	Zero	-2,000
Cash-out Ol	+10,000	+3,500	Zero	-8,500	-7,000	Zero	
Adjustment to ROI	Zero	Zero	Zero	Zero	Zero	Zero	

* Sign convention: over delivery at RWP is +ve; over take at DWP is -ve

Illustration of Running Operational Imbalance (ROI) at Welded Points showing hourly profile of ROI and cash-out OI

Where there is an increase in linepack different treatment..

Illustration of Running Operational Imbalance (ROI) when there is an *increase* in linepack: the increase in linepack is an adjustment to the ROI at WP with positive OI

OI example with increase in linepack: negative OIs are cashed-out, positive OIs are split between cash-out and adjustment to ROI

Operational Imbalance (OI) by Welded Point: Example with Increase in linepack

GAS INDUSTRY COMPANY LIMITED

Cash-out quantities on the Maui pipeline

- The objective is to preserve the price incentive for additional supply/demand reduction during a critical contingency
- All negative imbalances are cashed-out
- Positive imbalances are cashed-out but only to the extent that they helped supply consumers and maintain the linepack
- Any net increase in linepack during the CC is treated as an adjustment to the ROI
 - ⇒ All additional supply (and demand reduction) receives the critical contingency price up to the point that linepack has been restored to pre-CC level. Thereafter the increase in linepack is added to the ROI at WPs with positive OI.

OI at WP where there are multiple shippers: e.g. Rotowaro

- OI at Vector receipt WP is allocated to downstream shippers via existing shipper mismatch mechanism
- Shipper allocated flow through the receipt WP during duration of CC based on:
 - Hourly flows at downstream delivery WPs with single shipper (e.g. power station)
 - Allocation of hourly flows through downstream delivery WPs with multiple shippers (e.g. city gate)
 - Use metered flows where hourly data available for consumer
 - Hourly allocation is 1/24 of daily allocation for all other consumers
- Where curtailment occurs
 - Hourly metered sites automatically accounted for
 - Daily metered sites may need further adjustment (issue for industry to resolve)

3. Contingency price—how this will be calculated

Critical Contingency Price

Submissions Analysis stated an overarching principle that industry expert is to follow:

"The critical contingency price must be set at a level that reflects the price that would be established by an efficient short-term market that allocated scarce gas resources to the highest value during a contingency"

Critical contingency price: emergency pricing in other jurisdictions

Jurisdiction	Arrangement	Price used for cash-out of imbalances
Victoria*	Administered Price Cap	Net buyers from the spot market pay gas spot price. Under emergency conditions the spot price is capped at the Administered Price Cap (APC). The APC is set at \$80/GJ, a figure that is intended to include the full option value of LNG under normal market conditions. (LNG is the supply of last resort in an emergency.)
GB	Price immediately prior to emergency	 Originally System Average Price (SAP) for 30 days prior to emergency. Recently updated to: Short – pay SMP buy price immediately prior Long – receive SAP immediately prior
Ireland	Price in connected market at time of emergency	System Average Price derived from GB market

Critical contingency price: alternative factors for setting price

Pricing Factor	Reflects price in short-term market?
Electricity wholesale market to impute gas price	Power generation demand is curtailed first. Power generation makes up around 50% of total gas demand
Economic cost to users who had supply curtailed	Appropriate: - for a regional contingency where no power
	generation has been curtailed;
	 where curtailment required to cut deeper than power generation
Published fixed price ex-ante	Difficult to find a basis for setting the price (e.g. Administered Price Cap in Victoria)

Electricity wholesale market: example of gas price equivalent under MPOC

Source: Electricity Commission central data set at Otahuhu node, electrical conversion efficiency 140 kWh/GJ

- Electricity prices during (rather than prior to) the critical contingency
- Use the average price over the hours of the CC
- Details of which pricing node and the appropriate heat rate to use would need to be determined by industry expert

Critical contingency price (CCP)

OCMR	• Industry expert will be appointed by GIC to determine the CCP	
	• Overarching principle: the gas contingency price must be set at a level that reflects the price that would be established by an efficient short-term market that allocated scarce gas resources to the highest value uses during the contingency	
	• Lists prices that Industry Expert must take into account to include:	
	Prices in the electricity wholesale market during the critical contingency, used to impute a gas price;	
	The economic cost of the loss of gas supply to those consumers who had their gas supply curtailed	
	 Industry Expert will need to determine appropriate node for elect prices, appropriate heat rate and cost of carbon to impute the ga from electricity wholesale prices 	

GAS INDUSTRY COMPANY LIMITED

Contingency price guidelines specify which price the industry expert is to use

Invoicing arrangements for gas imbalances during a CC

Invoicing – details of the arrangements

OCMR	 Invoicing to be performed by TSOs 		
	 Each TSO to apply a cash-out pool arrangement 		
	 Negative contract imbalances invoiced first at the contingency price provided by the industry expert and moneys held in contingency pool 		
	• Payment of moneys in contingency pool to those in positive imbalance		
	 Obligation on TSO to pursue payment 		
Contract imbalance guidelines (annex to OCMR)	 Timing of invoices to parties in negative imbalance – MDL to issue invoices first, then Vector to issue invoices consistent with amounts invoiced by MDL. 		
	 Payment of involces due - Vector involces due [20^m] of the month following month in which invoice was issued. MDL invoice due on the following business day and Vector payment to be based on moneys received. 		
	• Payment to parties in positive imbalance will be on the last business day of the month		
ОСМР	Refer to the arrangements under the TSO's Code		
	Describe the adjustments necessary to implement regulations		

GASESTER Negative imbalances: timing of invoices and payment

- 3. Payment of Vector invoices
- 4. Payment of MDL invoices

Payments to parties in positive imbalance made following the collection of payment from parties in negative imbalance

Summary of changes to arrangements for contract imbalances and invoicing

Issue	Revised approach	Previous
Determination of contract imbalances performed by:	TSO	Appointee
Negative contract imbalances	At critical contingency price determined by independent expert	At gas contingency price determined by independent expert
Contingency cash pool held by:	Separate pool held by each TSO	GIC
Positive contract imbalances	Payment of moneys held in each TSO's contingency pool	Payment of moneys held in one contingency pool
Invoices for cash-out are issued by:	TSO	GIC
Timing for payment of invoices for negative imbalances	Vector TSO invoices due [day] before MDL invoices due	No issue

GAS INDUSTRY COMPANY LIMITED

How will these arrangements change Shippers' behaviours?

- Provides incentives to avoid taking others' gas unless they are willing to pay CP for it
- Mitigating actions:
 - portfolio supplies
 - purchase interruptibility from customers
 - purchase "insurance" from shippers who are likely to be curtailed
- Reasonable certainty of receiving CP means shippers who are long gas should continue to flow
- Incentives for producers who can supply additional gas to do so—expectation of CP

Next steps

- Present to stakeholders for consideration
- Update regulations in light of comments
- 'Short-form' consultation on proposed changes

Service provider agreement

- Develop the service provider agreement for CCO to reflect changes
- Possibility of spreading up-front costs over term of agreement
- Once regulations have progressed can move ahead with service provider agreement

Revised project plan

Revised project plan

Target Date	Key Step
Today	Industry forum to present proposed changes
Nov/Dec	Initial feedback from MED
18 December	Board considers short-form consultation on changes to proposal and updated draft regulations
19 December	Issue short-form consultation (Decision Paper)
11 February	Receive submissions
March/April	Board considers recommendation to Minister